CBSE 11 Math Practice Paper 03

CBSE 11 Math Practice Paper 03

CBSE 11 Mathematics 

Practice Paper 03

1. Find the degree measures corresponding to the following radian measures (Use \(\pi = \frac{22}7\) ).

 (i)  \(\frac{11}{15}\)    (ii)  \(– 5 \)   (iii)  \(\frac{-7π}3\)   (iv)  \(\frac{7π}2\)

2. Find the radian measures corresponding to the following degree measures: 

   (i)  \(15°\)         (ii)  \(-27°30'\)     (iii)  \(210°\)        (iv)  \(720°\)

3. Find the radius of the circle in which a central angle of 60° intercepts an arc of  length 37.4 cm (use \(π = \frac{22}7\)).

4. The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes? (Use \(π = 3.14\)).

5. If the arcs of the same lengths in two circles subtend angles 162° and 54° at the centre, find the ratio of their radii.

6. A wheel of a bicycle completes 210 revolutions in one minute. Through how many radians does it turn in one second? 

7. A circle of diameter 40 cm and the length of a chord is 20 cm. Find the length of minor arc of the chord.

8. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use \(π =\frac{22}7\)). 

9. If in two circles, arcs of the same length subtend angles 70° and 65°  at the centre, find the ratio of their radii.

10. Find the value of: 

      (i)  \(sin15°\)

      (ii)  \(tan 75°\)

      (iii) \(tan\frac{19π}3\) 

      (iv)  \(sin\frac{– 13π}3\)  

      (v)  \(cot\frac{– 17π}5\)

     (vi)  \(cos(–540°)\)

     (vii)  \(cos (–270°)\)

11. Prove that:

    (i)  \(sin^2\frac{π}3 + cos^2\frac{π}4  –  tan^2 \frac{\pi}3 =-2\)

   (ii)  \(tan4x = \frac{4tanx(1-tan^2x) }{1-6tan^2x+tan^4x}\)

   (iii)  \(cos4x = 1-8sin^2xcos^2x\)

   (iv)  \(cos6x = 32cos^6 x – 48cos^4 x + 18cos^2 x – 1\)

  (v)  \(\frac{sinx - siny}{cosx + cosy} = tan\frac{ (x-y)}2\)

  (vi)  \(sin (n + 1)x.sin (n + 2)x+\) \(cos(n + 1)x.cos (n + 2)x=\)\(cos x\)

 (vii)  \(cos\frac{3\pi}{4+x }- cos\frac{3\pi}{4 -  x }=\)\(-\sqrt2 sinx\)


12. Solve  \(sin 2x- sin 4x + sin 6x = 0\)

13. Solve  \(2cos^2 x + 3 sin x = 0\)

14. Prove that
 \(sin (40 + θ).cos(10 + θ)–\) \(cos(40 + θ).sin(10 + θ)\)\(= \frac{1}2\)

15. Find the principal solution of the eq.   \(sinx=\frac{\sqrt3}2\)

******************End*****************
Previous Post Next Post

Contact Form